We have received your request for registration. We will send you a confirmation e-mail once your request has been approved.


Please register below to sign up for our CoreAVI Newsletter.


Login below using the username and password created when you registered for CoreAVI resources.

Lost your password?

Not registered yet?


White Papers

This paper examines the standards and guidance related to safety certification of object code generated by a compiler toolchain for both CPU and GPU targets. It is written in the context of two markets: avionics (DO-178C/ED-12C) and automotive (ISO 26262). (ISO 26262 is derived from the general IEC 61508, which is also used and derived for other markets with safety-critical applications, such as rail and nuclear). This paper will explain the motivation behind the guidance and identify approaches that may be used to address concerns. Understanding the guidance and constraints will facilitate the selection of an appropriate approach.

As automotive features and functions continuously evolve, so does the need for solutions for display and Advanced Driver Assistance Systems (ADAS). Displays have changed from analog to mixed analog/digital to completely digital, enabling other enhancements such as digital mirrors. ADAS is evolving from cruise control (maintenance of speed) to auto-pilot-like driver assistance, and beyond. This white paper discusses how these continuous advancements are increasing the need for GPUs to perform video processing and compute (data-level parallelism through many core SIMD engines) as well as advanced graphics.

As the Avionics industry standardizes on graphical processing Application Programming Interfaces (APIs), CoreAVI has been able to apply Research and Development (R&D) efforts to larger system level problems such as video latency. Video system latency is driven by many factors; however, through the use of clearly defined interfaces CoreAVI is able to offer a single product which can be configured to drive video system latency to a very low level.

This white paper examines the standards and guidelines for avionics and automotive safety-critical software and hardware to show how cost savings in commercial solutions can be achieved. We begin with a description of how software and hardware requirements are traditionally developed, followed by an examination of how guidelines for commercial solutions are developed ‘out-of-context’ of a typical safety application. Next, this paper will describe the process of selecting a solution and putting the solution into the safety application context. Finally, it details how safety certification is supported and describes examples of commercial solutions available and in use today.

This white paper provides a history of graphics and compute standards as well as graphics technology, and discusses the new Vulkan graphics and compute libraries available for specialist industries that have more stringent safety requirements such as aerospace, automotive and transportation.

This white paper details how existing safety critical DO-178C or ISO 26262 application software source code can effectively be rehosted on advancing hardware.

This white paper discusses six different mixed safety criticality scenarios for graphics rendering in embedded systems, their pros and cons, and use case considerations.

This white paper provides an introduction to the Vulkan API. It discusses Vulkan’s benefits and explains how it differs from OpenGL.

This white paper discusses the simultaneous failures that may occur due to common mode failures and how these can be mitigated through design diversity to meet the numerical safety requirements of the airplane.

This white paper details how a compositor works, the benefits and drawbacks of using different compositor solutions, and why using a compositor is conducive to safety certifiability to the most stringent levels for avionics, automotive, rail and other environments requiring safety critical operation.

This white paper examines the concerns and mitigations with using COTS Graphics Processors (CGPs or GPUs in general commercial terms) in safety critical applications requiring accelerated 2D and 3D safety rendering.

GPU architectures have vulnerabilities that could lead to unclassified applications accessing classified data, either maliciously or accidentally. This white paper describes the areas of vulnerability, consideration for multi-level security and how to support graphics applications requiring multi-level security

Modern multi-core processors and Real Time Operating Systems (RTOS) provide support for running multiple applications that improve performance, including graphics application performance. This white paper identifies the key architectures enabled by current multicore processors and RTOS to support multiple graphics applications and describes how OpenGL drivers can support these architectures.

Looking for low Size Weight and Power (SWaP) processing solutions without giving up high performance safety certifiable graphics? This joint white paper with AMD provides an introduction to solution worth considering.

If you are looking for a high performance graphics processor capable of driving multiple displays in an safety critical avionics system, then the AMD Radeon™ E8860 is a great choice.   This joint white paper with AMD describes the benefits of the Radeon E8860 leading to its increased use on next generation commercial and military avionics applications, and why you may want to consider the Radeon E8860 too.

A new Safety Critical OpenGL® specification, OpenGL SC 2.0, was released by the Khronos Group April 2016.  This paper describes how OpenGL SC 2.0 fits into the overall scheme of OpenGL specifications leading into a comparison to the earlier Safety Critical OpenGL specification, OpenGL SC 1.0.1, and concluding with an introduction to programmable shaders, now available to Safety Critical applications through OpenGL SC 2.0, enabling a higher degree of capability through new levels of performance and control.

The subject device is comprised of five (5) very large scale integrated circuits mounted on a high density multi-chip hybrid module.  The part number of the hybrid module is 216T9NGBGA13FHG with a device description of ATI (now an AMD company) Mobility Radeon ™ 9000 M9-CSP64 Graphics Processor Unit, RoHS compliant.  The module is an FR4 material Printed Circuit Board (PCB) mounted with an ATI designed GPU circuit in a plastic encapsulated Fine Ball Grid Array (FBGA) package. This is then mounted on the bottom (ball) side of the PCB and conformal coated…

COTS graphics processors (GPUs) have become popular components in mil-aero display systems with high performance graphics processing requirements. This article provides several GPU selection considerations that can impact the success of a display system design and delivery schedule as well as total life cycle systems management costs…

The applicable IPC/JEDEC standards addressing moisture sensitive devices are J-STD-020D.1 and J-STD-033B.1 and GEIA-STD-003.  The standards deal primarily with moisture intrusion into device packages and the threat of destructive delamination during solder reflow.  This failure mechanism has proven to be a significant concern and becomes more critical in the context of RoHS compliant products, long term storage and very fine geometry VLSI components.  Many now believe the IPC/JEDEC standards are not stringent or comprehensive enough to account for the case where components are irreplaceable and where systems are mission critical.

Application Notes

Case Studies

This case study discusses how CoreAVI’s Vulkan graphics and compute technology and COTS-D designs help enable HENSOLDT’s next generation airborne computer.

This case study demonstrates how CoreAVI’s Vulkan graphics and compute technology helps enable NASA to open up new possibilities for global supersonic air travel.

Product Briefs

GPM3001 3U VPX E9171 Graphics/Compute Processor
GPMX002 XMC E9171 Graphics/Compute Processor
SBC3003 LX2160A Single Board Computer
COTS-D factsheet
Platforms for Safety Critical Applications
VkCore® SC
VkCoreGL® SC1
VkCoreGL® SC2
ArgusCore SC™ 1
ArgusCore SC™ 2
EGL_EXT_Compositor: FACE-aligned Safety Critical Compositor
ArgusCore ES2/GL1.3
AMD Radeon E9171 GPU
AMD Radeon E8860 GPU
AMD Radeon E4690 GPU
AMD G Series SoC
Arm Mali-G78AE GPU
NXP i.MX 8 SoC
S32V234 series of application processors
TrueCore™ GPU health monitoring
CertCore178™: Avionics DO-178C/ED-12C Software Certification Data Packages
CertCore254™: Avionics DO-254/ED-80 GPU Certification Data Packages
CertCore26262™: Automotive ISO 26262 Certification Data Packages


Joint Webinar: CoreAVI, DiSTI and NXP

Software reliability in today’s aerospace, automotive and industrial sectors is paramount.  OEMs strive for complete UI flexibility while striking a balance between safety critical or functionally safe development features, practices, and costs. As entire systems require qualification to become a certifiable design, this webinar addresses the challenges and solutions for safety-critical graphics in tomorrow’s aerospace, automotive, and industrial use cases through the whole stack. From the top application layer to the middleware, drivers, operating systems, and down to the hardware, we will discuss the entire safety-critical systems stack and the best practices to accomplishing system certifiability.

In today’s modern world, passengers and regulatory bodies alike demand the utmost in safe and secure travel. Whether the transport system is driven or remotely operated, HMI and Video display solutions are taking part in Safety and Security. Modern safety critical systems in a variety of vehicle platforms rely on safety certifiable Real Time Operating Systems (RTOS), with partitioning and even Hypervisor capabilities, allowing mixed criticality partitioning and separation of partitions in time and space to meet safety requirements for system designers. How does an integrator enable these mixed criticality systems in their platform, and how do they integrate them in a cost-effective way?

DiSTI and CoreAVI provide powerful graphical display solutions and hardware IP available for all well known RTOSs, and built for overall IEC Functional Safety standards (IEC 61508), as well as specific standards in a wide variety of markets including automotive (ISO 26262), trains (EN 50128) and aerospace (DO-178C). This webinar will discuss a variety of advanced graphics and HMI systems in these industries that require reliable mixed safety criticality levels, and how to effectively build them with the latest commercial design tools and drivers while taking advantage of a more modern software architecture and the capabilities of both OpenGL SC and Vulkan APIs.

Meeting Modern HMI Challenges: The Tools, Technology, and Techniques You Need to Design and Derisk Safety Critical System Architectures

Developers of modern avionics cockpit display systems face a myriad of challenges in developing versatile, high-performance HMIs that are reusable, certifiable, meet the latest standards and deliver the highest degree of safety criticality. During this 1hr live webcast, featuring industry experts in RTOS, graphics, and modeling, we will show developers how they can take advantage of modern capabilities and new developments in devices, tools and software to meet these challenges while minimizing risk. Our experts will examine system architecture, modeling, rapid prototyping and validation, as well as performance, reuse, certification, field maintenance, data fusion, and legacy systems. All these will be examined in relation to the latest standards, including, DO-178C, ARINC 653, ARINC 661, DO-297, CAST-32A, and FACE.

Embedded Graphics libraries have evolved from OpenGL to next gen Vulkan libraries. OpenCL and CUDA have been used for many years for GPU compute on a range of SoC devices with powerful embedded GPU chipsets. OpenCL and CUDA were never able to be certified; however, next generation autonomous vehicles, unmanned aircraft, transportation and even military vehicles will require safety critical graphics, as well as GPU compute, to implement DSP or FPGA logic into software. Vulkan libraries, which are defined by the Khronos Group, are now available, as well as the next generation of Vulkan safety critical libraries enabling safe shader and GPU Compute capabilities. This presentation will discuss Vulkan architectures, embedded system use, and the implications for using GPU Compute, where DO-178C, ISO 26262, EN50182, IEC 61508 certifications and more will be critical requirements.

Avionics hardware is ever-evolving, but often the accompanying display software doesn’t need to change. CoreAVI has a long history of collaboration with the FACE Consortium to lead the way in the creation of truly portable display software. We use open standards including OpenGL®, FACE™, and Vulkan® to allow a clear separation between display software and the hardware on which it runs. This separation benefits software developers as it allows them to start development work without needing to know what GPU they will be writing code for. CoreAVI has introduced a way to use the GPU to composite the visual output of different pieces of display software without requiring them to be rewritten each time a new symbol is added to the display. This method of compositing maintains the transparency of each pixel and sends them to the compositing application for proper blending, which enables full screen overlays to be run as separate applications as well as the splitting up the screen’s geometry. Such composition allows all but the compositing application to remain unchanged as new technologies are added or parts of the display rearranged. This presentation will describe in detail how existing DO-178C application software source code can effectively be rehosted on advancing hardware.

Modern GPUs have many tricks up their sleeves, from hyper-parallelized computation, to efficient 3D rendering. Graphics APIs such as OpenGL, expose graphics functionality with a mindset that matches the GPUs of their era. This presentation will discuss the Vulkan API, a new modern graphics and compute API, which takes a radical shift from legacy APIs such as OpenGL and gives total control of the GPU to the application, allowing embedded graphics to reach the next level.

Core Avionics & Industrial Inc. and HENSOLDT Sensors GmbH have partnered to release the world’s first RTCA DO – 178 and EUROCAE ED-12C safely certifiable 4K video output hosted on HENSOLDT’s RTCA DO-254 and EUROCAE ED-80 safely certifiable Mission Computer with Curtiss-Wright’s COTS OpenVPX processor, I/O, and graphic module building blocks. This continues the long relationship between CoreAVI and HENSOLDT to provide innovative and cost-effective graphics and video processing solutions for safety critical applications such as synthetic vision systems (SVS).

This solution enables system integrators and end-users to leverage the high-resolution imagery provided by aircraft-installed sensors and available databases  as well as large area displays to be installed in future aviation cockpits. Thus, the HENSOLDT Mission Computer with CoreAVI graphics drivers is already supporting the requirements of tomorrow’s avionic architectures.

CoreAVI brings flight displays to life powered by AMD G-Series Embedded processors and AMD Embedded Radeon™ Graphics.