
 www.coreavi.com sales@coreavi.com 1

White Paper

Introduction

The Khronos Group released their new 3D rendering and compute API named Vulkan on February 16th, 2016. Tools,

tests and validation layers, as well as a conformant open-source Linux driver were released the same day. Vulkan is a

high efficiency, royalty-free API that provides easy cross-platform access to modern GPUs. Purpose-built for 3D real-

time graphics applications, Vulkan is suitable for a wide range of platforms from mobile phones to embedded

applications. Built on components of AMD’s Mantle API, Vulkan was initially branded as the primary successor to

OpenGL®, but has been completely redesigned from the ground up with direct control over GPU acceleration, as well

as support for modern GPUs and programming practices in mind.

This white paper will discuss the benefits of Vulkan, its differences as compared to OpenGL, and considerations when

deciding between the two.

How Does Vulkan Compare to OpenGL?

OpenGL and Vulkan APIs each have their benefits, and it is key to consider the use case before deciding which type of

API suits the application at hand. It’s important to note that although OpenGL is 25+ years old, it will continue to be

developed since it is for now, in some ways, easier to use than a low-level API such as Vulkan. However, GPU vendors

are expected to eventually shift their focus from supporting OpenGL to supporting Vulkan.

OpenGL does not require developers to deal with memory, or with synchronizing the different blocks within a GPU,

making it usable for all levels of programmers. Since OpenGL is tied to high level contexts, much of the functionality is

hidden inside the driver to allow abstraction across hardware platforms. The developer tells the driver what they want

done, and how they would like it done, and the driver takes care of the intricate details and checks, including the

proper use of API calls, and deciding whether the state is properly prepared. The driver also provides the developer

with feedback on any issues. In addition, each individual command in OpenGL contains more functionality than low-

level APIs, and many of the functions can be completed easily. However, this ease of use is a trade off for less flexibility

and control over GPU management as compared to a low-level API.

Vulkan is more complex to use than OpenGL and offers much more control over the GPU. The Vulkan developer must

be far more involved in all the details, writing more code than is required with OpenGL. Vulkan communicates

commands directly to the hardware, and while memory and error management still need to be pushed to the

application, the application has the flexibility to optimize these processes, which can result in much higher

performance.

Figure 1 details Khronos’ summary of the differences between OpenGL and Vulkan APIs.

R
evisio

n
 0

7
M

ar2
0

1
9

Vulkan®: The Future of Embedded

Graphics

http://www.coreavi.com
mailto:sales@coreavi.com

www.coreavi.com sales@coreavi.com 2

Why Vulkan?

Vulkan is an object-based API with no global state. While Vulkan shares OpenGL’s graphics pipeline stages and no-

menclature, it has shed old layers of abstraction, resulting in simplified protocol roots, , and minimized graphical

driver overhead. Vulkan is a thinner and wider API than OpenGL; although there are more API functions in Vulkan,

each specific function tends to do less work on the CPU and incurs less overhead. This flexibility affords the applica-

tion the possibility to setup exactly the right amount of state it needs, and in exactly the way it wants to set it, giv-

ing the application the option to optimize work and reduce CPU overhead in the process. In this way, the greatest

difference between OpenGL and Vulkan is that the OpenGL implementation needs to make educated guesses

about what the application intends to do - for example it needs to choose the best memory heap for a given alloca-

tion - whereas the Vulkan implementation is explicitly told by the application.

Figure 2 and Figure 3 below demonstrate the difference in CPU usage between OpenGL and Vulkan.

Figure 1: Comparing OpenGL and Vulkan APIs 1

1 Retrieved from https://www.khronos.org/assets/uploads/developers/library/overview/2015_vulkan_v1_Overview.pdf

http://www.coreavi.com
mailto:sales@coreavi.com
https://www.khronos.org/assets/uploads/developers/library/overview/2015_vulkan_v1_Overview.pdf

www.coreavi.com sales@coreavi.com 3

2 Retrieved from https://www.youtube.com/watch?v=r0fgEVEgK_k (data supplied by AMD)
3 Retrieved from https://www.youtube.com/watch?v=r0fgEVEgK_k (data supplied by AMD)

Figure 2: OpenGL CPU Utilization
2

Figure 3: OpenGL Vulkan CPU Utilization
3

http://www.coreavi.com
mailto:sales@coreavi.com
https://www.youtube.com/watch?v=r0fgEVEgK_k
https://www.youtube.com/watch?v=r0fgEVEgK_k

www.coreavi.com sales@coreavi.com 4

Vulkan API eliminates the need for separate compute and graphics APIs. Vulkan’s capabilities allow it to receive either

graphics or compute commands and allocate them to the correct execution unit in the GPU. This is much more effi-

cient and less complex than running a mixed OpenGL and OpenCL™ environment.

In contrast to OpenGL which, due to its high-level encapsulation of the graphics workload was not an API that lent

itself easily to multi-threaded environments, Vulkan enables better scaling on multicore CPUs. For example, in multi-

core CPUs running OpenGL, one core is typically responsible for managing time sensitive tasks. Vulkan can, however,

tap previously unused hardware resources to split this workload up between many cores. Vulkan drivers do no error

checking, saving significant CPU usage time; however, Vulkan has an optional parameter checking layer that may be

used, or if the application has strict data checking, this layer may not be required. Parallel buffer generation ensures

all cores are used and allows developers to get the maximum performance out of their hardware.

GPU hardware today is much more standardized than past hardware, and developers want visibility into the GPU. Vul-

kan is specifically designed for modern GPUs and allows more balanced GPU usage and more direct control over the

GPU than OpenGL. With Vulkan, developers can see what the GPU is doing, as texture, memory management, for-

mats, etc. are all developer controlled, but enough details remain hidden to maintain cross-platform compatibility.

OpenGL and Vulkan expose the GPU’s programmable pipelines to the application. OpenGL uses the GLSL shader lan-

guage while Vulkan uses SPIR-V. SPIR-V instructions resemble assembly instructions. Many Vulkan application devel-

opers write their shaders first in GLSL and then use a GLSL->SPIR-V converter offline, before providing the SPIR-V bina-

ries to Vulkan online.

Should I use Vulkan or OpenGL?

The decision to use Vulkan or OpenGL APIs is highly dependent on your specific platform and configuration. The fol-

lowing scenarios are some examples where you may want to reconsider using Vulkan:

• Your application needs compatibility to pre-Vulkan platforms

• Your application is heavily GPU-bound

• Your application is heavily CPU bound due to non-graphics requirements

• Your application is single threaded, and this is not likely to change

• Your application can target middleware and avoid direct 3D graphics

http://www.coreavi.com
mailto:sales@coreavi.com

www.coreavi.com sales@coreavi.com 5

Figure 4: Comparison of OpenGL and Vulkan APIs 4

4 Taken from https://www.toptal.com/api-developers/a-brief-overview-of-vulkan-api Oct 30, 2017

http://www.coreavi.com
mailto:sales@coreavi.com
https://www.toptal.com/api-developers/a-brief-overview-of-vulkan-api

© 2019 Core Avionics & Industrial Inc. All rights reserved.

www.coreavi.com sales@coreavi.com 6

VkCore™ SC Safety Critical API

To bring Vulkan’s state of the art capabilities to embedded markets, CoreAVI has developed a safety critical version of

the Vulkan API called VkCore SC. VkCore SC is designed and developed from the ground up for high performance and

flexibility and offers the option for RTCA DO-178C/EUROCAE ED-12C certification up to DAL A. Legacy applications are

also supported through OpenGL SC 1.0.1 and Open GL SC 2.0 libraries called VkCoreGL SC 1 and VkCoreGL SC 2 running

on top of Vulkan, allowing legacy OpenGL applications to take advantage of the advanced capabilities of Vulkan while

transitioning from OpenGL to Vulkan. This allows for performance improvements and the addition of differentiated

features to existing applications.

VkCore SC is available with the DO-178C/ED-12C safety certification packages required for avionics applications, as well

as an ISO 26262 Accredited Safety Assessment Certificate for automotive platforms. To learn more, read our VkCore SC

datasheet or contact Sales@coreavi.com.

Author

Mary Beth Barrans

Director of Marketing

Mary Beth Barrans joined CoreAVI in 2017. As the Director of Marketing, she is re-

sponsible for the product positioning and customer-focused power messaging for

CoreAVI’s safety certifiable graphics and hardware IP product lines, as well as strate-

gic partnerships and events. She previously worked for Curtiss-Wright Defense Solu-

tions as a Senior Marketing Product Specialist. Mary Beth has a Bachelor of Social

Sciences, a Bachelor of Education, a Masters of Arts, and a Technical Writing desig-

nation.

http://www.coreavi.com
mailto:sales@coreavi.com
http://www.coreavi.com/vkcore-sc
http://www.coreavi.com/vkcore-sc
mailto:Sales@coreavi.com.?subject=VkCore%20SC

