
1

W R I T T E N  B Y

Is Your Digital Cockpit 
Telling You the Truth?

Christopher Giordano
Vice President UX/UI Technology

Neil Stroud
VP Marketing and Business Development

Mustafa Ali
Sr. Product Manager



2

Modern automotive applications are becoming more 
complex with the disruption of vehicle architecture, 
which requires heightened safety and managing 
of mixed-criticality applications. This development 
facilitates the merging of IVI and cluster, HUD, and mirror 
replacement displays. This paper discusses moving the 
automotive digital cockpit to a safer and more reliable 
architecture while leveraging industry open standards 
and best-in-class partner collaborations, tools, and 

hardware to deliver a seamless workflow to developers. 
Using the latest technology innovations in hardware 
and software stacks, developers can rapidly create and 
iterate on a mixture of safe and standard embedded 
graphics and compute on new safety-critical GPUs. 
This approach enables faster time to market, reduces 
development costs and certification effort, and reduces 
risk, resulting in a safer user experience on and around 
the road.

1.0 Importance of Safety-Critical Rendering in 
the Modern Digital Cockpit

Modern automotive applications are becoming more complex with disruption 
of vehicle architecture, which requires heightened safety and managing of 
mixed-criticality applications. For example, the merging of IVI and cluster, 
HUD, and mirror replacement displays may require different levels of safety. 
One application may need to be engineered to an ISO 26262 ASIL B level, 
while another, more critical application may need to meet more stringent ASIL 
D levels. When both applications are running on the same system, they may 
not interfere with one another or cause any false information to be displayed 
that may ultimately affect the driver’s safety. This approach could also 
extend to use cases where applications that are considered safe sit alongside 
applications that are ‘non-safe,’ such as infotainment information. This 
scenario is where the importance of safety criticality comes into play.

Using the latest technology innovations in hardware and software stacks, 
developers can rapidly create and iterate on a mixture of safe and standard 
embedded graphics and compute on new safety-critical GPUs. This approach 
heightens the end user’s safety and enables faster time to market, reduces 
development costs and certification effort, and reduces risk, resulting in a 
safer user experience on and around the road.

Is Your Digital Cockpit Telling You the Truth?



3

This paper discusses moving the automotive digital cockpit to a safer and more 
reliable architecture while leveraging industry open standards and proven 
partner collaborations, tools, and hardware to deliver a seamless workflow to 
developers. We show that this can be achieved by using a combination of GPU 
hardware, driver stack, and app development tooling that are fit-for-purpose to 
handle functional safety requirements and support for mixed-critical workloads. 
Furthermore, we explain that a pre-certified GPU, Driver, and Graphics Library in a 
Mixed Criticality Stack is a newer method to help with development and  
cost efficiencies.

For the purposes of this paper, a generic system topology has been defined 
(Figure 1) that outlines how the various elements must come together to achieve a 
functionally safe system. This approach can be taken as a baseline and tailored to 
a multitude of application use cases requiring different safety levels ranging from 
Quality Managed (QM) to ASIL D. For simplicity, some elements are not shown but 
assumed to exist within the system such as operating systems and a hypervisor 
where necessary.

This paper is organized as follows. Section 2 discusses how the safety-critical 
human-machine interfaces (HMIs) in vehicles have evolved to being digital. Section 
3 introduces the considerations in moving from legacy to all digital safety-critical 
HMIs. Section 4 presents the details of hardware and software components that 
make up the proposed solution for flexible, fully digital SC HMIs. Section 5 talks 
about the benefits that partnerships for SC HMI solution development bring to the 
automotive supply chain and Section 5 presents the conclusions.

2.0 Evolution of Safety-Critical Human 
Machine Interfaces

Human Machine Interface (HMI) can be any interface, not just 
digital. The National Institute of Standards and Technology 
(NIST) defines the term HMI as “The hardware or software 
through which an operator interacts with a controller. An 
HMI can range from a physical control panel with buttons 
and indicator lights to an industrial PC with a color graphics 
display running dedicated HMI software.” (1)  Concerning digital 
interfaces in automotive, a great example of the progression 
of HMI with respect to functional safety, might be the telltales. 
Previously, telltales were an LED that would turn on or off, so 
measuring voltage to the LED and showing it lit was easy from 
a verification and validation standpoint. Today, the HMI for the 
same telltale systems can be digital and hence anywhere on the  
screen (Figure 2).

The automotive market continues to search for the best methods 
to validate these objects in digital space. However, one needs 
only to look at parallel industries like aerospace that have been 
handling digital functional safety graphic user interfaces for 
decades to gain insight and ideas.

Figure 1 Generic System Topography

Figure 2 Examples of Legacy and Modern Telltales

1. https://csrc.nist.gov/glossary/term/human_machine_interface
3



4

While the automotive market appears to be rapidly progressing 
in handling functional safety content in digital space, most 
vehicles on the road today that employ any digital user interfaces 
rely on a Cyclic Redundancy Check (CRC). The CRC is an error-
detecting code used to confirm that the screen contents match 
what they are supposed to be displaying for the given vehicle 
data to detect any erroneous changes to the raw data expected 
to be displayed. This approach has challenges regarding the 
tolerance of more complex, non-stationary graphical content, 
for example, flourishes, 3D animations, and other dynamic 
changes to content, which are discussed further in this paper. 
To manage the next layer of complexity for FuSa content, which 
involves adding animations, flourishing and dynamic changes, 
etc., essentially completely opening up the designer’s tool bag for 

SC content, a fully ISO 26262 ASIL B certifiable hardware and 
software stack is required to draw graphics and trust the output 
implicitly, with no need to restrict graphical features to perform 
a CRC check. Furthermore, to manage the complexity of safety 
certification, the HMI development process can be automated 
with the proper commercially available tooling.

There is a transition period where manual drive is moving toward 
autonomous driving. In this case, where there is still human 
intervention, there is a need for FuSa in the visual graphics to 
safely and accurately convey the state of safety-critical data. 
Once (and if) every vehicle transitions to pure autonomous, this 
may change.

3.0 Transition from Legacy SC HMI 
System Design

Like many other sectors, automotive is undergoing a 
fundamental shift in system architecture driven by integration 
complexity, cost, form factor, and safety. Two challenges that 
must be overcome related to the consolidation of functions onto 
fewer sub-system platforms within the vehicle and, closely 
coupled to that, the ability to achieve mixed-criticality capability 
within said platforms.

The first trend can already be seen as the industry migrates 
from the traditional Electronic Control Unit (ECU) approach to a 
Domain Controller or Zonal Controller architecture. This method 
has broad-reaching implications at the vehicle level; it results in 
a dramatic reduction in the number of processing nodes but also 
significantly increases the processing capabilities of each node, 
with each being responsible for multiple functions. In contrast, 
an ECU would only be responsible for a singular function. These 
functions that reside on a single hardware platform will likely 
have different safety requirements, referred to as  
‘mixed-criticality.’

To put this into context, a modern vehicle instrument cluster 
displays a plethora of information for the driver. Some of this 
information is deemed non-safety critical such as information 
from the media system or navigation information. However, 
other data such as system 'tell tales' or critical status information 
would be considered safety-critical. Naturally, the system must 
ensure that the safety-relevant information is displayed correctly 
to enable the vehicle operator to react accordingly—the need 
for mixed-criticality places stringent requirements upon the 
underlying hardware and software elements.

3.1 Shift from legacy GPU to safe GPU 

With the move to richer user interfaces displaying critical 
information, e.g., speed, lane, gear, etc., and warnings in real-
time in modern vehicles, GPU accelerated displays are becoming 
standard. When displays are used for rendering critical data, 
these systems are expected to meet safety goals to ensure the 
vehicle's safe operation.

Until now, safety-critical display elements have been designed 
to be separate from the GPU rendered part of the display. This 
approach is because traditional GPUs have not been designed 



5

3.2 Shift from Embedded to Safety-Critical APIs 

In any visualization-based application, the software has an 
important role in displaying rich graphical information by 
maximizing the use of available graphics processing unit 
(GPU) performance and facilitating the safe display of critical 
information. To achieve this, all the stack 'layers' must interact 
correctly to achieve the desired safety functionality or 'goal.' 
After all, safety is typically about 'divide and conquer.'  
Naturally, we debate closed and proprietary solutions versus 
open-standards-based solutions (as opposed to open-source, 
which is still very nascent from a functional safety perspective). 
In reality, both must coexist, but the question then becomes 
about where the hand-off should occur in the stack. Both are 
important and have associated pros and cons.

The driver and libraries layer of the stack has enjoyed a great 
deal of industry standardization addressing both commercial and 
embedded applications. This method includes standards-based 
APIs such as OpenGL®, Vulkan®, OpenCL™, and many more that 
enable the application developer with a standard API to interface 
to the underlying platform. This approach, in turn, facilitates 
differentiation at the application level along with an element of 
hardware abstraction and software reuse and scalability. This 
factor is increasing in importance given the levels of investment 
in software development and maintenance.

Given the increase in functionally safe applications, the industry 
has been working to define safety critical derivatives of these 
same drivers and libraries. The development of the Vulkan® SC™ 
standard by The Khronos Group is a strong proof point of this 
and their safety-critical versions of the OpenGL® standard – 
OpenGL® SC™ 1.0.1 and OpenGL® SC™ 2.0. But what does that 
mean in reality? What must be taken into consideration to turn 
a commercial software driver or library into one that is fit-for-
purpose in a safe system?

There is a two-part answer to that question. Firstly, safety 
development is governed by stringent processes and procedures, 
including requirements capture and traceability, reviews, and 
development practices. This approach relates to how the product 
is developed. Secondly, the specific features of the software 
driver come under the microscope. To give an example, safety 
systems rely heavily on deterministic behavior. One must know 
precisely how long a function will take to execute so it can 
be scheduled accordingly. Some functions that exist within 
commercial drivers are non-deterministic in nature because, 
for many applications, some variance in execution time can be 
tolerated. Obviously, this is not acceptable for a safety-based 
system, and therefore these functions have to be deprecated 
from the safety-critical version. This can be seen when 
comparing the functions available to the developer between 
OpenGL® ES™ and OpenGL® SC™ variants.

The outcome of this means that the system developer can rely 
heavily on the benefits of using open-standards-based drivers 
and libraries even when functional safety is design constrained 
within mixed-criticality graphics systems. The Vulkan SC and 
associated OpenGL SC example depicted in Figure One delivers 
on the benefits discussed earlier. This approach can be used  
for functionally safe graphics applications. However, by utilizing 
the Vulkan SC driver, the developer can also address safe 
compute applications prevalent in many ADAS and autonomous 
use cases.

with functional safety goals, making it complex to ensure 
the correctness of the rendered output. This limits what 
designers can achieve with the flexibility and computation 
power offered by GPUs.

To fully use the capability of the GPU for safety 
applications, the GPU itself and the software stack should 
be capable of tolerating, detecting, and/or reporting faults 
that could lead to system failure. Having the capability 
to detect and report faults that may affect the system's 
safety goals allows a system designer to design complex 
user interfaces offering rich visual information, knowing 
that misleading information will not be presented to the 
user, which could otherwise endanger a vehicle user 
relying on the information to make critical  
driving decisions.

5



6

3.3 Design Automation with Mixed-Criticality 

While certification is a requirement to save lives, it can be 
a costly endeavor. If an efficient development process can 
minimize the code required to be certified by having the OpenGL 
draw code well abstracted from the object data code and the 
user-created code, vehicle OEMs and parts suppliers can save 
on the certification process. Using pre-certified tools can further 
reduce the overall cost of certification. Avoidance of monolithic 
applications during the certification process can ensure a 
modular and well-structured design that is efficient for the 
purposes of the graphics stack.

Pre-certified GPU, Driver, and Graphics Library in a Mixed 
Criticality Stack is a newer method to help with development and 
cost efficiencies. While the concept of mixing different levels of 
Automotive Safety Integrity Level (ASIL) with QM content is not 
new, the automating of that process is unique. Figure 3 shows 
both an ASIL layer and a QM layer as an example.

Automation of the creation of separate apps form a single 
design file, a process known as Mixed-Criticality, lets developers 
iterate very quickly during the HMI prototyping process and 
implementation development. This approach helps to see the 
resulting mixture of QM and ASIL content in the same design 
and on the target platform in an effort to offset and minimize the 
cost of certification and the time to develop the graphical layers.

4.0 Hardware and Software Solution for 
Modern Automotive HMIs

4.1 Automotive Targeted GPU Suitable for ASIL B 

For a GPU to be suitable for use in a modern digital cockpit 
system, it must service two fundamental requirements: (1) 
provide the capability to consolidate the different application 
workloads that use the GPU hardware while ensuring that there 
is sufficient isolation between these to avoid any interference, (2) 
provide the desired safety coverage when running safety-critical 
workloads so that the hardware can be trusted to detect and 
report faults.

To meet these requirements, we have developed a scalable GPU 
as an ISO 26262 safety element out of context (SEooC) that 
supports the consolidation of multiple workloads and is suitable 
for ASIL B for detection of random hardware faults and ASIL 
D for protection against systematic faults. The GPU employs 
a novel architecture that provides a high degree of flexibility 
via different ways of mapping multiple workloads to the GPU 
resources, such as traditional hardware virtualization along 

with flexible hardware partitioning. Furthermore, it adopts a 
cost-efficient, industry standard, and application transparent 
approach for achieving functional safety to minimize the total 
cost of system development for both hardware and software. 
Next, we describe further details of these capabilities and how 
they contribute to meeting the requirements of modern  
digital cockpits.

4.1.1 GPU Virtualization for Workload Consolidation

Virtualization of GPUs allows different virtual machines (OS) 
running their own independent graphics stacks to concurrently 
use available GPU resources in a time-shared manner, as shown 
in Figure 4. GPU virtualization is a key enabler of function 
consolidation in vehicles. It is key to the design of modern vehicle 
architecture aiming to reduce the cost of multiple ECUs and 
wiring harnesses needed.

GPU virtualization needs to ensure adequate separation between 
workloads executing on the GPU. Time-sharing of GPUs is one of 
the approaches to enable consolidation. A common way to time 
share a GPU between multiple workloads is at a frame boundary. 

Figure 3 MIxed Criticality Example

6



7

This approach can work well for well-behaved workloads, i.e., 
release the GPU in a timely manner for other workloads to start 
in time without missing their rendering deadlines. However, this 
may not be true when sharing GPU between compute workloads 
or a mix of graphics and compute workloads.

An alternative way is through flexible partitioning, which 
provides a higher guarantee of performance isolation. This 
separation and isolation are essential when executing tasks 
of differing safety levels on the GPU, referred to as ‘mixed-
criticality,’ such as instrument cluster (safe) and navigation 
information (non-safe).

4.1.2 Flexible Partitioning for Workload Separation

Flexible partitioning opens more freedom to system designers 
to consolidate independent workloads on a given GPU hardware 
to ensure the highest degree of isolation can be guaranteed. 
Flexible partitioning allows the GPU to be reconfigured at run-
time to support various partitioning configurations depending 
on various workload demands that need to execute on the GPU. 
Due to more substantial isolation between different partitions, 
it is preferable to have a separate partition for the safety-critical 
workload to ensure deterministic performance, as shown in 
Figure 5.

Figure 4 A digital cockpit supporting multiple operating systems as virtual machines running on virtualized GPU

Figure 5 GPU virtualization vs partitioning and hybrid approaches to 
workload consolidation



8

This flexible partitioning is enabled by a novel architecture that 
divides the GPU compute resources into slices, as shown in 
Figure 6.

Each GPU slice can operate as a fully functional GPU having its 
own job manager, tiler (geometry), shading, MMU, and L2 Cache 
resources, and a separate interface to system memory. The GPU 
uses a hardware Partition Manager, which provides the interface 
between the virtual machines and GPU slices. It is responsible 
for the configuration of GPU slices into partitions.

A partition can have one or more slices connecting to 
neighboring slices to scale up the number of shader cores. Each 
partition can also be powered down and reset independently, 
providing true isolation and freedom from interference to meet 
ISO 26262 requirements.

Going further, a GPU provides additional flexibility by featuring 
multiple independent interfaces for virtual machines to submit 
GPU workload. These various interfaces allow safety-critical 
VMs to use a dedicated interface while the second interface may 
be shared. Also, since a safety island may manage the safety and 
configuration, a separate interface helps to ensure freedom  
from interference.

4.1.3 Enabling ISO 26262 ASIL B Functional Safety

GPUs support hardware safety mechanisms, as shown in Figure 
7, that facilitate meeting the requirements of ASIL B systems. 

Since GPUs constitute a significant investment in silicon area 
and power consumption, these functional safety mechanisms 
have been architected to be largely configurable while ensuring 
an optimum balance between silicon area and performance. This 
is ensured by using industry-standard built-in self-test (BIST) 
approaches that can be tailored to meet the safety requirement 
vs. area and performance overheads.

As GPUs can be used for different types of rendering and 
general-purpose compute workloads, it is also ensured that the 
hardware safety mechanisms used to detect faults are agnostic 
of the workload. This means that the hardware safety check is 
transparent to the application executing on the GPU such that 
the portability of the application is not affected.

Figure 6 GPU architecture for supporting flexible hardware partitioning

Figure 7 GPU architecture and hardware safety mechanisms for 
supporting ASIL B



9

4.1.4 Scalable Design for Entry-level to Premium Cockpit

The highly scalable architecture of GPUs, as shown in Figure 8, 
helps system designers select the right amount of computing 
resources depending on the performance and cost target. It also 
allows silicon vendors targeting different products catering to 

entry-level to high-end requirements to use the same hardware 
and software architecture across the products family, which 
is key to saving costs. The ability to create up to 4 flexible 
partitions out of an available GPU slices allows given hardware 
to be reconfigured according to the needs of different workloads 
executing on the GPU.

4.2 Scalable Safety-Critical  
Software Stack

A fundamental way to reduce the total cost of ownership for 
software is through the adoption of open standards. This allows 
a developer to leverage a standard interface while giving the 
freedom to differentiate at the application level. This is not a 
new concept and can be seen across the software landscape. 
However, the industry has been looking at the benefits of 
open standards and working to apply them to the safety 
domain with proof points such as OpenGL SC, a safety-critical 
implementation of the popular OpenGL standard, and the 
recently ratified Vulkan SC standard, a safety-critical version of 
the popular Vulkan API.

4.2.1 Vulkan SC as the Safe GPU Interface

The Vulkan SC API can be used as a foundational GPU driver 
layer to enable the application to interact with the safe GPU 
facilitating rich, high-performance, safe graphics for the 
modern vehicle displays. This approach can also be extended to 
applications where the safe GPU is being used for computing 
applications such as ADAS and autonomy functions, but that 
falls outside this paper's scope.

4.2.2 OpenGL for Safety

Where the application does not natively interface to the Vulkan 
SC API, it can still be leveraged as an abstraction layer. In this 
case, the OpenGL SC library sits ‘on top of’ the Vulkan SC API, 
exposes the OpenGL API to the application, and translates it 
via the Vulkan layer to the GPU. This is especially useful if the 
system developer needs to deliver safe graphics but is perhaps 
migrating from applications that utilize the embedded  
OpenGL ES.

4.2.3 Software Flexibility and Safety

Adopting this approach affords the developer the vast benefits 
of open standards while delivering a clear path to safety 
certification. While most safe graphics applications within 
today’s vehicles only need to achieve ASIL B, the Vulkan SC 
and OpenGL SC elements can be certified up to an ASIL D 
level. Additionally, this stack can utilize the flexible partitioning 
features of the underlying safe GPU leading to high performance, 
mixed-criticality systems such as cockpit domain controllers.

Figure 8 Scalable GPU architecture

9



10

4.3 HMI Tool for SC Graphics 

As UX and UI design continues to develop during your 
program and considering the rapid response required to the 
competitive landscape, there will be many iterations. Selecting 
the appropriate HMI graphics tool is critical to the success of 
any program. Below are a series of guidelines to consider when 
choosing the right tools for HMI development, specifically 
pertaining to safety-critical requirements.

4.3.1 Pre-Certified

An HMI tool with pre-certification to a higher level of certification 
than your initial requirements can save precious reengineering 
time as requirements morph throughout the program. For 
example, if your requirement is for ASIL B and you are presented 
with ASIL D support options at no extra effort or cost, that 
option should be the top pick. There are several permutations of 
the process to become pre-certified that the following V model 
(Figure 9) topically sums up.

While this works for the runtime software, depending on the 
level of functional safety certification, the process may also 

require tool qualification. Higher levels of functional safety 
certification require a more rigorous approach. For automotive 
specifically, functional safety is a function of Severity, Exposure, 
and Controllability, as seen in the graph below (Figure 10).

4.3.2 Strong History and Experience

The more experience an HMI tool vendor has in functional 
safety, the less risk your program will take on in safety-critical 
requirements. In looking at other markets, software functional 
safety processes and procedures will have different levels 
of rigor. Always consider the industries with more rigor than 
required when taking technology and design techniques from 
those industries. In aviation, for example, the software does not 
only need to be certified to the DO-178C standard, but the tools 
that create the software require qualification to corresponding 
DO-330 TQL levels. Leveraging tools that have been through 
this level of rigor can give the developers the confidence that 
the runtime and content generated from the tool will meet lower 
levels of functional safety.

4.3.3 Target Portability for Rapid Iteration Cycles

The HMI software development environment should be agnostic 
to the target hardware and OS or RTOS/OS. This is another 
effort to futureproof the HMI development effort. HMI tools 
can be well segmented and abstracted to have a Model View 
Presenter approach that keeps the content as modular and 
agnostic as possible. Reusability from target to target is essential 
to the long-term maintainability and supportability of the 
program (Figure 11).

Suppose the HMI is developed to a specific platform, and in 6 
months, a superior target SOM or CPU is released for the same 
or lower price. You should have the flexibility to move to the 
superior target without adding software risk to the program.

Figure 9 V-Model

Figure 10 Defining the Automotive Safety Integrity Level (ASIL) that 
is to be applied to the element in question.

Figure 11 Rapid Portability from Desktop to Target

10



11

4.3.4 Mixing ASIL Levels with QM

A pure safety software HMI approach, while significantly more 
reliable, may also prove to be more fiscally challenged depending 
on the level of tools you use. Here again, precertification is 
vital to cost savings, but further cost savings could be found in 
segmenting the ASIL parts of the HMI to separate layers and 
compositing those layers together on the target.

Having both ASIL and QM in the same display is a process called 
mixed criticality (Figure 12). There are also tools available that 
can take the ASIL and QM contingent together in the same 
design canvas providing a smooth workflow process for  
mixed-criticality HMI. This, in turn, provides a very rapid iteration 
capability with both safety-critical and standard QM  
embedded content.

5.0 Collaboration Benefits to Automotive 
Ecosystem for Digital Cockpits
5.1. Automotive Supply Chain for SC  
Digital Cockpit 

5.1.1 Supply Chain Hierarchy

The traditional automotive supply chain is complex (Figure 13), 
although this is undergoing a shift with the emergence of OEMs 
looking to develop hardware and software in-house, bringing in 
vertical integration and potentially shortening the length of the  
supply chain.

This doesn’t show the different ecosystem players in the chain. 
They play a critical role in supplying various pieces of software, 
tools, and services to facilitate the system integration by Tier 
1s and/or OEMs. These could include (for example) providers of 
graphics stack and HMI tooling used by system integrators (Tier 
1s) to deploy safe HMI in a vehicle.

5.1.2 What Changes with Safety-Critical

The automotive supply chain can play a crucial role in reducing 
cost and time to market associated with the development of 
functional safety products. While developing a safety-critical 
system, it is vital that all the individual elements that constitute 
the system, when integrated, help achieve the system-level 
safety goal. This can be achieved by ensuring that the individual 
components are developed following relevant safety standards 
to meet safety requirements allocated to these elements based 
on the system-level functional safety concept. The pre-certified 
pieces such as GPU IP, software stack, and tooling is a step 
in this regard. Furthermore, we have ensured that these pre-
certified pieces work together to a give a pre-integrated solution 
for safety-critical graphics rendering that works. This will 
support system integrators while preparing to develop software 
and hardware in-house, as they have access to this solution 
while selecting the hardware itself.

Figure 13 A traditional automotive supply for the deployment of GPU IP

Figure 12 Mixed-Criticality Example



12

Conclusion

Having the appropriate architecture in place before developing 
any capable safety system is paramount to the program's 
success. Finding the partner ecosystem where all sub-specialty 
parts have been pre-integrated will save any OEM or Tier 
1 supplier significant time and effort in developing, testing, 
iteration, and fielding a new system. This paper covered some 
of the more critical components of such a system, from the 
evolution of HMI software safety and considerations of what 
the software stack should look like to the importance of mixed-
criticality and Safe Computing with the supplier interactions 

within the supply chain. In developing any architecture, it is 
prudent to consider the latest technology, how it is currently 
employed and what other markets may be more mature where 
developers can learn from others' mistakes and triumphs.

As the complexity of modern automotive architecture 
systems becomes ever-more reliant on emerging technology, 
implementing safety-critical focused hardware and software 
stacks is paramount. This approach improves time-to-market 
and provides a reduction in development costs and certification, 
but ultimately it reduces risks for the OEM, culminating in a safer 
driving experience.

12ISBN: 978-0-578-38940-0


