

coreavi.com sales@coreavi.com 1

Vulkan
®
 SC

Safety-Critical Graphics and Compute Library

Abstract—The Human Machine Interface (HMI) in embedded processing systems continues to become more complex.

Aerospace, automotive, rail, and industrial control markets are pushing on all the edges of the technology “box”. Dis-

plays are getting larger and of higher resolution, information content is becoming more complex and diverse, and imag-

es from sensors are now processed with sophisticated levels of Artificial Intelligence (AI) and Machine Learning (ML)

algorithms. Further complicating these advances are pressures to make things more “open”
1
, more portable, and safety-

certifiable. This paper examines the evolving requirements for embedded processors that interact with pilots and opera-

tors and suggests a solution that may bring harmony to these seemingly disparate requirements. A software architecture

centered around the Vulkan
®
 ecosystem will be described that holds the promise of more efficient processing for

graphics, image processing, and autonomous decision making (through AI), while being bundled in an environment that

is hardware agnostic and capable of being certified to the most stringent safety levels.

INTRODUCTION
In certain industries, systems that interact with humans must be both sophisticated and highly reliable. Displays and

controls for a pilot in a cockpit, a driver in an automobile, an engineer running a train, or an operator managing complex

systems in a refinery, all require real time responsiveness, clarity in presentation, and high integrity operations. These

diverse industries have a lot in common. They need to continuously develop and improve their systems to allow their

human operators to operate at peak efficiency. They are pushed by economic drivers that include short product develop-

ment cycles and low recurring costs, which produces a need for reuse and/or portability and modularity. Increasingly,

these systems are coming under the scrutiny of government regulators with new and evolving requirements for safety

certification. Fortunately, technology innovations are providing many solutions to these complex problems. Newer hard-

ware and System-on-Chip (SoC) processors with multi-core architectures and embedded graphics accelerators are real-

izing significant gains in computing horsepower in smaller size and lower power packages. Real Time Operating Sys-

tems (RTOSs) are helping coordinate the use of these heterogeneous resources (CPUs and GPUs) with partitioned and

virtualized software foundations. HMI and application software development tools are becoming more user-friendly and

more accessible throughout the software environment. Graphics generation libraries continue to provide developers with

great capability and flexibility. Even the rapidly evolving world of AI and ML is being incorporated into this ecosystem.

What is missing, however, is a unifying environment that can bring all these separate pieces together in a fashion that

promotes efficient operations, abstracts the application software from the target hardware, and brings determinism and

testability into the equation in support of safety certification. This paper will explore these challenges as well as discuss

a set of standards and products that support graphics, inference engines running AI/ML routines, and general purpose

computing libraries. Information will be provided on where and how to get started followed by some concluding remarks.

coreavi.com sales@coreavi.com 2

HMI CHALLENGES, 2021 AND BEYOND
For decades, humans interacted with machines using mechanical indicators, warning lights, and gauges. As cathode ray

tube displays were introduced to cockpits and industrial control panels, greater flexibility was provided for systems, in

that different types of information could be selectively rendered on the same display surface. The flat panel display tech-

nology that we know so well today really broadened the places and applications for diverse information presentation.

These displays are now in our cars, in our phones and watches, and just about everywhere we go. We are in the infor-

mation age largely because of displays used for HMI.

The flexible and expansive capabilities of these display devices tend to spawn new ideas and new applications which, in

turn, creates a need for higher resolution displays with faster update rates and more complex rendering challenges.

These requirements drive a greater need for processing power, but in environments where space, power, and cost can

be at a premium. New systems have to always manage the “do more with less” requirements of technology churn.

The content presented on these displays has radically evolved as well. What started out as the rendering of what was

formerly rendered on lights and “steam gauges” has evolved into an art form where realism dictates performance capa-

bilities.

One might think that with all of these common factors driving such huge segments in our markets that there would be

greater uniformity in the processing platforms that run them, but that has not been the case. The free markets driving

silicon processing platforms still support several different Instruction Set Architectures (ISAs)—like x86, Arm, and the up-

and-coming RISC-V—which are all thriving. However, getting software applications to easily run on all these constantly

evolving processing platforms is a non-trivial exercise. RTOSs have helped insulate software applications from the hard-

ware to a certain degree but there are still challenges. Graphics development libraries and APIs like OpenGL
®
 have also

helped, but there are still wide chasms to cross when going from one hardware platform to another.

As sensors are increasingly used to enhance the situational awareness of human pilots and operators, they are being

rendered on every display in a cockpit or dashboard or control room console. That said, embedded processing systems

are doing more than simply rendering these images; they are doing massive amounts of sensor processing including

fusion, stabilization, stitching, target recognition/characterization/tracking ,and facial recognition functions. This pro-

cessing is also allowing for augmented reality presentations where computer-rendered graphics are overlayed, confor-

mally, on top of the sensor images. This capability presents challenges for the embedded processing environment at

both the hardware and software level.

With access to more and more sensors, systems are now empowered with more information and can thus make more

decisions on their own. Autonomy is becoming a part of planes, trains, automobiles, and everything in between. The AI

and ML algorithms that form the foundation of this autonomy need to run on neural networks and powered by inference

engines
2
 that process real-time sensor data, to compare with learned (compute trained) data, and then make autono-

mous control decisions. This capability presents significant challenges to the embedded processing platform developer

because it involves so many different facets of the design.

coreavi.com sales@coreavi.com 3

As embedded systems are empowered with more and more ca-

pability and control (see Figure 1), they will be challenged to do

so in a safe and reliable manner. Because these systems are

oftentimes at the heart of critical platforms (airplanes, automo-

bile, transportation systems, or control rooms) they will be ex-

pected to undergo rigorous safety certification.

VULKAN SOLUTION FOR EMBEDDED
Industry has worked diligently at trying to solve all of these prob-

lems with a single ecosystem—something that offers better per-

formance, supports both graphics and general-purpose compu-

ting, is agnostic to hardware, and that has a path to safety certi-

fication. A standard called Vulkan
3
 is the answer to this chal-

lenge. Vulkan is managed as a set of open-source specifica-

tions that allow industry to both embrace and evolve the stand-

ard (and any related products) through an industry group called Khronos. This broad base of support is fundamental to

those industries that require safety certification. Allowing industry to participate in standard setting committees and thus

influence future specifications is essential. The Vulkan Application Programmers Interface (API) is a whole new world for

embedded processing systems that have used OpenGL on their GPUs in the past. Unlike OpenGL, Vulkan allows ac-

cess to the GPU’s general purpose compute functionality, similar to OpenCL and CUDA. Due to the performance in-

creases that were initially achieved, Vulkan started off with a large appeal to video game developers. However, as the

benefits of this improved efficiency became more broadly understood, the embedded processing industry took notice. In

support of this wider adoption, the Khronos Group is in the process of defining a safety-critical subset of the Vulkan

standard. This has captured the attention of aerospace, automotive, and transportation industries where OpenGL SC

has been used in the past, and where high levels of safety certification are required.

Vulkan’s key components are execution units, work queues, command buffers, pipelines, subgroups, memory buffers,

and the Vulkan device or “VkDevice” (to which all commands are applicable). Vulkan also makes use of SPIR-V

(Standard Portable Intermediate Representation for Vulkan), which provides the compiler infrastructure for GPU environ-

ments. Currently, there are several low-level guides on ‘how to program’ Vulkan, while high-level information on the Vul-

kan software architecture continues to evolve.

For graphics applications, Vulkan allows for direct control over the GPU and it supports the incorporation of higher-level

libraries built on top of traditional libraries, such as OpenGL (e.g. OpenGL SC 1.0 and 2.0). Bundling options within this

environment allow software development companies to add GPU managers, compositing support, and video capture

mechanisms. The Khronos group sponsors display management with the compositing extension, which minimizes appli-

cation efforts for the instantiation of multiple windows within a multi-partitioned graphics system (e.g.

“VK_KHR_DISPLAY” extension, “EGL Compositor” extension for OpenGL, etc.).

Figure 1: Embedded Systems Grow in Complexity with

the Addition of a Multitude of Sensors

coreavi.com sales@coreavi.com 4

When properly configured, compositors in a Vulkan environment can:

1. Enhance information assurance by preventing any non-primary contexts and surfaces from rendering to the dis-

play.

2. Allow for management and control of GPU allocation to specific contexts, including how much GPU memory a

specific application is allowed to use.

3. Support application-dependent off-screen window drawing, ensuring that one application’s data will not be over-

written with another application’s data.

4. Prevent Vulkan or OpenGL from rendering unless express instructions from the compositing application allow it.

5. Run in hypervisor environments enabling secure and independent virtualized GPU partitions.

6. Allow system designers to mirror off-screen windows to multiple windows on physical displays (without having to

invoke multiple applications.

A by-product of implementing higher level APIs on top of Vulkan (such as OpenGL and EGL), is that Vulkan can easily

work with popular existing HIM auto-code generating tools. This environment provides a standard windowing API that

can be used in mixed criticality systems – ideal for embedded processing applications like aerospace, defense, automo-

tive, rail, and industrial.

One of the most important improvements over previous APIs & Libraries (e.g. OpenGL/OpenCL) is that Vulkan opens up

the world of shader and General-Purpose Graphics Processing Unit (GPGPU) Kernel compute (see Figure 2). Shader

compute gives an application the ability to repurpose the shader engines for GPGPU computation, which means that a

Vulkan application can reduce the workload of the CPU by utilizing the GPU more. Vulkan also provides a much lower

level of access to the hardware, which means it can have significantly less overhead than standard OpenGL, which in

turn improves performance.

Figure 2: The Vulkan Standard Provides a Rich Set of Components

for Graphics, Image Processing, and AI/ML

coreavi.com sales@coreavi.com 5

Vulkan SC is a new specification being created to specifically support embedded platforms that require human machine

interaction: aerospace, automotive, industrial, and transportation industries. Standard Vulkan already supports a wide

range of GPU devices across most processor architectures. Vulkan SC currently supports a smaller number of platforms

but there is still support for AMD GPUs, NXP SOC’s (with Vivante’s GC7000 SXVS GPU) and most recently, support for

the Arm Mali-G78AE (Automotive Enhanced with ISO 26262 capabilities). The Vulkan SC ecosystem is expected to rap-

idly expand and improve as more and more safety-critical projects adopt it as a standard.

Although Vulkan SC builds upon standard Vulkan (1.1) there are some differences that ensure a path to safety certifica-

tion. These differences include:

1. SPIR-V shader compiling and linking is offline and can only be performed on a host development system.

2. Pipeline cache and pipeline derivative functionality is more restrictive.

3. Freeing of memory is not allowed in Vulkan SC.

4. Vulkan SC will have additional callback mechanisms to deal with command buffer memory exhaustion and fatal

error handling.

BEYOND GRAPHICS - VULKAN FOR IMAGE PROCESSING AND AI/ML
In addition to Vulkan 1.1 and Vulkan SC, the Khronos Group has released a standard for computer vision and sensor

processing. OpenVX 1.3 is an industry standard API that provides a feature set for implementing a variety of image pro-

cessing, computer vision, and artificial intelligence functions. It is a high-level compute API that fits into the Vulkan ethos

of building higher level abstractions on top of a low-level driver. And, because it has broad industry support, it is an ideal

replacement for systems that previously used OpenCL, CUDA, and/or OpenCV. OpenVX 1.3 supports the deployment

and design of neural networks, vector machines, Gaussian filtering, optical flow, and more. Users can build libraries on

top of Vulkan 1.1 (non-cert) and Vulkan SC (cert) to implement both graphics and general-purpose compute capabilities,

all within the same framework.

The Khronos group has also released a safety OpenVX SC feature set for automotive embedded vision applications us-

ing GPU acceleration for vision-based embedded machine learning applications. This “Safety-Critical Deployment Fea-

ture Set” provides algorithms for performance that are crucial to pre-processing and post-processing tasks on sensor

data flows. This collection of computer vision algorithms—edge detection, Sobel filters, etc.—provide an infrastructure

for neural network inferencing engines to not only perform efficiently, but to do so as part of a safety-certifiable ecosys-

tem. This architecture supports a wide range of AI/compute applications such as augmented vision systems, object de-

tection/tracking/identification, signal processing, image processing for degraded visual environments, security monitor-

ing, encryption, Advanced Driver Assist Systems (ADAS), and more. This software architecture can be hosted on virtual-

ly any RTOS and supports flexible GPU compute capabilities, but in a deterministic, runtime-state-management environ-

ment (no undefined behavior is present). This approach allows conformance to the most stringent levels of RTCA DO-

178C, EUROCAE ED-12C, and ISO 26262 (see Figure 3.) The Vulkan ecosystem also allows software developers to

create their own mathematical libraries like Basic Linear Algebra Subprograms (BLAS)
5
and FFT for accelerated vector

and matrix calculations in a safety-critical manner. BLAS and FFTs form the mathematical foundation for most AI and

computer vision platforms.

coreavi.com sales@coreavi.com 6

Another Khronos-supported standard that can work

within the Vulkan ecosystem is the Neural Network

Exchange Format (NNEF)
7
. NNEF was developed to

support the seamless transfer of a wide variety of

trained networks into various inference engines. The

compute expense of many convolutional neural net-

works can be prohibitive for the embedded processor

developer. Many in the industry are using low-power

devices to accelerate neural net-based inferencing,

but their approaches vary considerably from one

company to the next. This chaos in the industry runs

the risk of creating unnecessary barriers and frag-

mentation to solutions that might otherwise work

across multiple platforms. NNEF enables a

standard set of neural network training tools and

inference engines that reduces machine learning fragmentation. NNEF provides stability to a rapidly changing and

evolving AI/ML environment by providing an extensible standard that industry can rely on. NNEF defines a complete set

of structure, operations, and parameters of a trained neural network with a degree of independence from the training

tools used to produce it. As embedded systems adopt AI/ML routines into their ecosystem, the differences between the

cloud-based training tools and the processor implemented inference engine can be challenging. NNEF, when deployed

within the OpenVX ecosystem (see Figure 4), brings determinism and discipline into the equation, which will allow em-

bedded system developers to both reduce development time and to create a path to safety certification.

GETTING STARTED WITH VULKAN
The arguments for employing some or all of the

Vulkan ecosystem into an embedded processing

system that runs the Human Machine Interface are

compelling. For performance, portability, and a path

to safety certification there is clearly no better op-

tion. In spite of all the variables and options, getting

started with Vulkan is straightforward. Most integra-

tors will take the following steps: select hardware,

select an RTOS, procure or adapt the Vulkan SC

driver to the platform, select graphics driver options,

select an HMI tool (if desired), and procure or adapt

OpenVX, Compute, and NNEF files (as needed).

One of the great advantages of Vulkan is the broad hardware support it enjoys among hardware providers. Vulkan is

supported by all major Instruction Set Architectures (ISAs), including x86, Arm, and RISC-V. Vulkan can run on highly

integrated SoC devices as well as on discrete CPUs and GPUs.

Figure 3: The Vulkan Standard Provides a Rich Set of Components

for Graphics, Image Processing, and AI/ML

Figure 4: OpenVX Supports Significant Image Processing

and AI/ML Capabilities

coreavi.com sales@coreavi.com 7

By its very nature, Vulkan 1.1 and Vulkan SC run independent of the RTOS. However, as other elements are integrated,

RTOS considerations do factor in. Vulkan has been integrated by various RTOS companies throughout industry. Select-

ing hardware and an RTOS with an established Vulkan integration pedigree will reduce development program risks.

After the target platform (hardware and RTOS) is established, developers should create or procure Vulkan and integrate

accordingly. Vulkan’s place in the software architecture will allow it to insulate applications from the hardware platform

and provide those applications with low-level access to critical silicon resources. Most importantly, it will serve as a host

to other add-ons and extensions (OpenGL, OpenVX, BLAS, etc.).

For graphics applications, the embedded processor developer will then choose to use Vulkan for graphics or to integrate

an OpenGL product. The graphics environment will need to include a GPU manager, a compositor, and if required, vid-

eo encoding/decoding drivers.

Finally, for image processing and/or AI/ML routines, the designer should consider the acquisition of a product like

OpenVX, compute libraries/routines, and file conversion tools like NNEF (depending upon the application needs).

CONCLUSION
Systems that interact with pilots and operators in safety-critical environments are seeing new challenges with each pass-

ing year. These systems continue to become more complex while markets put pressure on designers to lower costs,

reduce development times, leverage reuse and scalability where possible, and conform to safety-critical standards.

These pressures are in place for all market spaces: aerospace, automotive, rail, and industrial control. Displays and the

content rendered on them are becoming more complex and oftentimes including images from sensors that must now be

processed with sophisticated levels of Artificial Intelligence (AI) and Machine Learning (ML) algorithms. Portability con-

cerns are always at the forefront, as there continues to be a wide variety of hardware and RTOS platforms needing sup-

port. In conjunction with all of this is the need to comply with increasingly stricter industry safety standards. One solution

to all of these issues is the Vulkan software architecture and ecosystem. Vulkan promotes more efficient performance by

exposing low-level silicon features to software applications. Vulkan promotes both hardware and RTOS agnosticism with

a structure that was built from scratch with this in mind. Vulkan supports both graphics and general-purpose processing

while also enabling the hosting of libraries with image processing capabilities, AI/ML routines, and low-level mathematics

functions, so that advanced applications can operate at peak efficiency within an embedded processing system. And,

because Vulkan is an open standard, there are easy and defined steps to experiment with it, adopt it, and field it for a

variety of products.

ACKNOWLEDGEMENT
The author would like to thank Lucas Fryzek (Field Application Engineer) and Ken Wenger (Software Engineer) both of

Core Avionics & Industrials Inc. for their help in contributing to this paper.

coreavi.com sales@coreavi.com 8

© 2021 Core Avionics & Industrial Inc. All rights reserved.

REFERENCES
1. Karl Wiegers & Joy Beatty. “Requirements for Devices Around Us: Embedded Systems, Part 2.” modern ana-

lyst.com. https://www.modernanalyst.com/Resources/Articles/tabid/115/ID/3149/Requirements-for-Devices-

Around-Us-Embedded-Systems-Part-2.aspx

2. B.G.M. Vandeginste. “Handbook of Chemometrics and Qualimetrics: Part B.” Data Handling in Science and

Technology, 1998

3. Khronos Group. Vulkan 1.1 Reference Guide. https://www.khronos.org/files/vulkan11-reference-guide.pdf

4. Khronos Group. VK_KHR_display(3) Manual Page. https://www.khronos.org/registry/vulkan/specs/1.2-extensions/

man/html/VK_KHR_display.html

5. GNU Scientific Library. BLAS Support. https://www.gnu.org/software/gsl/doc/html/blas.html

6. Khronos Group. The OpenVX Specification. Version 1.3 10 Sep 2020. https://www.khronos.org/registry/OpenVX/

specs/1.3/html/OpenVX_Specification_1_3.html

7. Khronos Group. Neural Network Exchange Format (NNEF) Specification 1.0. https://www.khronos.org/nnef

AUTHOR

Michael Pyne

Director Strategic Accounts & Solutions Architect

Mike’s role as Director Strategic Accounts & Solutions Architect at CoreAVI allows him to bring to-

gether the rapidly evolving world of “open” software infrastructures with the safety-critical require-

ments of both manned, pilot assisted, and autonomous platforms. Mike has over 40 years of experi-

ence in Defense and Aerospace markets. Previously, as an engineering fellow with Honeywell,

Mike developed cockpit architectures and systems for a variety of airborne defense platforms like

the F-15, F-16, F/A-18, C-130, OH-58D, CH-47, and the V-22. Mike’s focus on all of these platforms

was in using open system architectures for high reliability/mission critical roles in rugged military

environments.

Mike is based in Albuquerque, New Mexico, has a BSEE from Brigham Young University, and holds two patents in the

area of sensor processing.

The information contained in this document is for informational purposes only and is subject to change without notice. CoreAVI, the CoreAVI tracer logo, and combinations thereof are trademarks of

CoreAVI. All other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

https://www.modernanalyst.com/Resources/Articles/tabid/115/ID/3149/Requirements-for-Devices-Around-Us-Embedded-Systems-Part-2.aspx
https://www.modernanalyst.com/Resources/Articles/tabid/115/ID/3149/Requirements-for-Devices-Around-Us-Embedded-Systems-Part-2.aspx
https://www.khronos.org/files/vulkan11-reference-guide.pdf
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_KHR_display.html
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_KHR_display.html
https://www.gnu.org/software/gsl/doc/html/blas.html
https://www.khronos.org/registry/OpenVX/specs/1.3/html/OpenVX_Specification_1_3.html
https://www.khronos.org/registry/OpenVX/specs/1.3/html/OpenVX_Specification_1_3.html
https://www.khronos.org/nnef

