
 

Core Avionics & Industrial Inc. 

400 North Tampa Street 

Suite 2850 

Tampa, Florida 33602 

 
T:     888-330-5376 

F:     866-485-3199 

www.coreavi.com 

 

 

  

 

 

 
 

© 2016 Core Avionics & Industrial Inc. All rights reserved Page 1 of 5 
 

White Paper: How to Implement Multiple GPU Applications 

in an Embedded System 

 

Introduction 

In embedded systems, a graphics application is built on top of a user-level graphics library associated 

with a graphics driver, OpenGL SC 1.0.1, OpenGL SC 2.0, OpenGL ES 2.0 or OpenGL 1.3, which converts 

high-level commands into low-level GPU commands which are written to a command ring buffer within 

a GPU. While multiple graphics applications driving a single, or multiple, GPU can be managed at the 

application level, modern multi-core processors and Real Time Operating Systems (RTOS) provide 

support for running multiple applications that improve performance, including graphics application 

performance. Even though GPUs typically have parallel execution paths to drive multiple displays, there 

are some shared resources, such as the command ring buffer, which need to be managed by the 

OpenGL driver to support running multiple graphics applications. 

This white paper identifies the key architectures enabled by current multicore processors and RTOS to 

support multiple graphics applications and describe how OpenGL drivers can support these 

architectures. The architectures presented are: 

1) Multi-Threaded (tasks) 

2) Multi-Partition (process) 

3) Multi-Threaded Multi-Partition 

4) Hypervisor 

A summary is then provided on specific available solutions. 

The selection of which architecture is the best for a given application is beyond the scope of this white 

paper.  While there may be some graphics performance differences, the approach is best made with an 

understanding of the system level requirements within the capabilities of the selected hardware 

architecture and operating system. 

Starting with the simplest architecture where all applications share a memory space, multi-threaded. 

Multi-Threaded 

Threads enhance the process model with multiple threads executing concurrently within a partition. 

Multiple threads can exist within a partition in the same address space while partitions do not share 

address spaces. The advantage is that when a thread is waiting for hardware resources, other threads 

can continue to execute taking advantage of otherwise unused computing resources.  Another key 

advantage is that inter-thread communication is fast. The disadvantages are that there is overhead to 

thread switching and there is no protection between threads. 

If all the threads running graphics applications are in the same address space, only a single OpenGL 

driver instance is needed. A straight forward method to manage multiple threads accessing the single 

OpenGL driver is to add a method to allocate command and DMA/data buffers for each OpenGL context. 

Rendering commands would then be loaded into these context specific command buffers and DMA/data 

http://www.ch1group.com/
http://www.coreavi.com/


 

Core Avionics & Industrial Inc. 

400 North Tampa Street 

Suite 2850 

Tampa, Florida 33602 

 
T:     888-330-5376 

F:     866-485-3199 

www.coreavi.com 

 

 

  

 

 

 
 

© 2016 Core Avionics & Industrial Inc. All rights reserved Page 2 of 5 
 

White Paper: How to Implement Multiple GPU Applications 

in an Embedded System 

 

buffers independent of other running threads using the OpenGL driver.  Serialization would then be 

used during critical sections of accessing the GPU or accessing global or shared data. 

When graphics applications are in different address spaces, typically different partitions or processes, a 

different type of solution needs to be added to OpenGL drivers. This is covered in the next section on 

multi-partitions. 

Multi-Partition 

The major difference between threads and partitions is that partitions are protected from every other 

partition by the RTOS kernel using memory management. The advantage is that partitions offer a high 

degree of protection for both security and safety.  The disadvantage is the overhead associated with 

Inter-Partition Communication. 

Since partitions do not share memory, a different approach to using OpenGL GPU drivers is necessary. 

Instances of an OpenGL driver would then need to exist in each address space (partition) as shown in 

Figure 1. Then an added communication layer is needed between the OpenGL drivers to synchronize 

and coordinate the shared GPU resources on behalf of the graphics applications. 

 

 

Figure 1  Single Core CPU Multiple Partition Display System 

Then multi-threaded and multi-partition can be combined where one or more of the partitions are 

running multiple threaded graphics applications. 

System Memory Shared 
Memory

Data
Buffers

Data
Buffers

...

GPU

GPU
CMDs

Ring
Buffer

Single Core Processor

Application 1
Code

OpenGL Driver

Application N
Code

OpenGL Driver

Display
Controller 1

Display
Controller 1

Display 2Display 1

RTOS Partition

RTOS

Application
 Partition N

Application
Partition 1

GPU
CMDs

http://www.ch1group.com/
http://www.coreavi.com/


 

Core Avionics & Industrial Inc. 

400 North Tampa Street 

Suite 2850 

Tampa, Florida 33602 

 
T:     888-330-5376 

F:     866-485-3199 

www.coreavi.com 

 

 

  

 

 

 
 

© 2016 Core Avionics & Industrial Inc. All rights reserved Page 3 of 5 
 

White Paper: How to Implement Multiple GPU Applications 

in an Embedded System 

 

Multi-Threaded Multi-Partition 

This is a variant of multi-partition where the partitions running multi-threaded applications have an 

instance of the OpenGL driver with added command and DMA/data buffers for each OpenGL context as 

described under multi-threaded above. 

Advancing beyond traditional multi-threaded and multi-partition methods to run multiple applications, 

most processors and RTOS now support a hypervisor. 

Hypervisor 

A hypervisor is software layer between guest operating systems and either a host operating system or 

the actual hardware. The hypervisor virtualizes the underlying resources to make it appear to the guest 

operating system as if it has exclusive access.  That is, the hypervisor creates virtual machines for guest 

operating systems. When it comes to graphics, there are three base methods to virtualize the GPU in a 

hypervisor environment: 

1) Emulation: Every read/write access to the GPU is managed by the hypervisor.  While technically 

possible, this approach would severely impact graphics application performance and is generally 

not done. 

2) Pass-Through:  Each guest operating system has unfettered exclusive access to the memory 

registers.  While fast, this approach has challenges when it comes to sharing. 

3) Para-virtualization: The device driver in the guest operating system is hypervisor aware and 

works through a GPU virtualization manager module in the hypervisor. This is a similar approach 

to multi-partition except a separate GPU virtualization manager is required to be included in 

hypervisor. 

With the background on the architectures for multiple application execution and associated needs from 

an OpenGL graphics driver for each, the discussion now looks at what the available OpenGL driver 

solutions look like. 

  

http://www.ch1group.com/
http://www.coreavi.com/


 

Core Avionics & Industrial Inc. 

400 North Tampa Street 

Suite 2850 

Tampa, Florida 33602 

 
T:     888-330-5376 

F:     866-485-3199 

www.coreavi.com 

 

 

  

 

 

 
 

© 2016 Core Avionics & Industrial Inc. All rights reserved Page 4 of 5 
 

White Paper: How to Implement Multiple GPU Applications 

in an Embedded System 

 

How to Implement Multiple GPU Applications into an Embedded System 

As you can see, the various multi-application execution configurations described above require 

customization of standard OpenGL drivers.  While the industry standard OpenGL API does not change, 

the underlying communication path to the GPU(s) changes relative to a single application configuration. 

There are standard COTS drivers available for these configurations that minimize your development 

effort and cost while speeding time to market.  For multi-threaded, multi-partition and multi-threaded 

multi-partition, Core Avionics and Industrial (CoreAVI) have standard factory build options for 

embedded and safety certifiable ArgusCore™ OpenGL drivers. A summary of the options is shown in 

Table 1. There is also a parallel standard factory build option for Symmetric Multi-Processing (SMP) or 

Asymmetric Multi-Processing (AMP) multi-core processor architectures. 

Table 1  Supported ArgusCore Graphics Applications 

 ArgusCore 

 ArgusCore ArgusCore 
MT 

ArgusCore 
MP 

ArgusCore 
MTMP 

Single-threaded Graphics Application X X X X 

Multi-threaded Graphics Application  X  X 

Combination of single-threaded and multi-
threaded Graphics Applications in the same 
address space 

 X  X 

More than one Graphics Applications each 
in its own address space 

  X X 

Multiple GPUs X X X X 

 

It is recommended that the selected ArgusCore configuration matches exactly the system configuration 

to minimize driver overhead and thus optimize performance.  That is, CoreAVI does not recommend the 

multi-threaded multi-partition configuration as a catch all for future use as this would impact 

performance when all the features of this execution configuration are not needed.  Since the API 

presented to the application remains an industry standard OpenGL API, the impact to port an 

application to another execution environment is minimal and mainly consists of rebuilding the 

application against the new libraries. 

In the case of a hypervisor based architecture, CoreAVI also has a build option for the ArgusCore 

OpenGL drivers to enable hypervisor awareness.  This, coupled with the CoreAVI’s HyperCore™ GPU 

virtualization manager, provides a complete para-virtualization for GPUs in an embedded application.  

HyperCore is compatible with all leading RTOS hypervisors and includes additional health monitoring 

features to monitor multi-application GPU usage. 

http://www.ch1group.com/
http://www.coreavi.com/


 

Core Avionics & Industrial Inc. 

400 North Tampa Street 

Suite 2850 

Tampa, Florida 33602 

 
T:     888-330-5376 

F:     866-485-3199 

www.coreavi.com 

 

 

  

 

 

 
 

© 2016 Core Avionics & Industrial Inc. All rights reserved Page 5 of 5 
 

White Paper: How to Implement Multiple GPU Applications 

in an Embedded System 

 

With these solutions, your applications continue to interface with industry standard OpenGL graphics 

Application Programming Interfaces (API) and the CoreAVI drivers manage all the multi-application 

graphics interfaces to the GPU(s).  Furthermore, the ArgusCore OpenGL drivers and HyperCore GPU 

virtualization manager are available with optional Avionics DO-178C, Automotive ISO 26262 and Railway 

CENELEC EN 50128 certification data packages supporting up to and including the most stringent levels. 

One last item to keep in mind is that the overall factor limiting the number of supported graphics 

applications is typically each application’s requirement for system and video memory. 

 

Where to Find Additional Information on OpenGL Drivers Supporting Multiple Graphics Applications 

CoreAVI provides high Technology Readiness Level (TRL) OpenGL SC 1.0.1, OpenGL SC 2.0 drivers, 

OpenGL ES 2.0 and OpenGL 1.3 with HyperCore GPU virtualization manager with optional certification 

evidence for avionics, automotive and railway safety critical graphics functions. 

More information about CoreAVI’s ArgusCore OpenGL drivers, with extensions, along with a comparison 

of driver features can found here: CoreAVI safety certifiable graphics drivers. 

More information about CoreAVI’s HyperCore GPU Virtualization Manager can be found here: CoreAVI 

HyperCore 

Contact CoreAVI to find out what we are working on and to discuss your demonstration/evaluation 

requirements: Sales@CoreAVI.com  

 

 

 

 

 

http://www.ch1group.com/
http://www.coreavi.com/
http://www.coreavi.com/product-categories/embedded-opengl-drivers
http://www.coreavi.com/product-categories/gpu-hypervisor
http://www.coreavi.com/product-categories/gpu-hypervisor
mailto:Sales@CoreAVI.com

