
                                                                                    www.coreavi.com       sales@coreavi.com                                                                 1 

White Paper  

 

 

 

 

 

 

 

 

 

 

 

 

 

Introduction 

The use of multicore, hypervisor and multiple independent partitions in modern embedded systems allows a new 

generation of display technologies to use one multifunctional hardware system to perform multiple independent 

tasks. Running multiple tasks on the same multifunctional hardware saves the application size, weight, and power, as 

well as reduces overall project cost.  However, depending on the functional requirements and safety classification 

needed, an application may require a variety of safety certification levels running on the same graphics system. For 

example, one avionics partition may need to adhere to FAA and EASA Design Assurance Levels (DAL) A, while 

another partition may be required to support DAL D. Similarly, an ISO 26262 automotive application may require 

Automotive Safety Integrity Level (ASIL) D on one partition, and QM on another. While this poses less of a challenge 

on CPUs where execution can be fully pre-empted, GPUs typically are non pre-emptive.  That is, it is generally not 

feasible to halt or interrupt rendering operations once they have been submitted to the GPU. With this restriction, 

how can integrators ensure that the lower level partition does not impact the higher level partition, and that all 

applications run properly to their designated DAL/ASIL?  

This white paper discusses six different mixed safety criticality scenarios for graphics rendering in embedded 

systems, their pros and cons, and use case considerations. 

 

Scenario #1:   

All graphics rendered using a software renderer (i.e. no GPU hardware acceleration) 

A software renderer allows graphics to be rendered entirely by the CPU without requiring any graphics hardware. 

While the CPU is preemptable, it does not provide the same level of graphics performance and is therefore not ideal 

for heavy graphics workloads. Although GPU hardware acceleration (discussed in Scenario #6) provides better 

rendering performance and does not consume CPU resources, using a software renderer allows the lower DAL 

rendering process to be interrupted and allows the GPU software emulation engine to completely switch over to the 

higher DAL application. The software rendered is typically OpenGL® SC 1.0 which uses a fixed function pipeline, as 

emulating shaders in a programmable pipeline (such as OpenGL SC 2.0) would be costly.   

Besides the lack of performance, one drawback is that software rendering in safety critical applications still requires 

a display controller, which is typically a GPU display controller or, alternately, a display controller IP block in the 

FPGA. The GPU adds to overhead in terms of size, cost, power (for example, leakage current). This still requires BIT 

to check that the register configuration is not affected by a single event upset, and that there is no resulting impact 

to the memory interface and display controller settings that are critical to proper operation.  

 

R
evisio

n
 1

3
A

u
g2

0
1

8
 

Mixed Safety Criticality Levels for Graphics Rendering 

http://www.coreavi.com
mailto:sales@coreavi.com


www.coreavi.com       sales@coreavi.com                                                                 2  

Use case: Using multiple software renderers for mixed safety criticality levels is a solution well suited for rendering 

that does not need a high frame rate such as full text displays (e.g., multi-purpose control and display unit, maintain-

er data, and even waypoint lists) and simple rendering such as graphical engine data. 

 

Scenario #2:  

Highest level application uses GPU hardware acceleration and lower level applications use a software 
renderer 

GPU hardware acceleration and software rendering may be used in tandem to produce a solution with combined 

benefits. This configuration is easily certifiable and is best used when the highest safety criticality application has a 

heavy graphics workload. The application(s) requiring the higher criticality level can use the GPU to its fullest extent 

because there are no less critical applications using it. For example, in this scenario, if a DAL A application is the only 

application accessing the GPU, and a lower DAL C application has data to display, the DAL A application can command 

the GPU to copy and display the image the DAL C application created. In this case there is only one transfer of data 

required from the software renderer to the GPU per frame. A compositor, which can render windows from multiple 

applications onto a display and is certifiable up to DAL A, can also be used to take in low level rendered images to the 

GPU. For more information on the compositor, please read our white paper “A Safety Critical Compositor for OpenGL 

SC 1.0.1 and OpenGL SC 2.0”. 

In a multi-core environment, a lower criticality level application can run on a separate core and have no interference 

with higher level applications.  This scenario also supports multi-rate rendering – for example, when a lower criticality 

level application needs to produce a PDF page every second, and a higher level application might need to run at 60 

Hz.  

This scenario does not come without processing drawbacks. The more lower level applications that are needed in a 

system, the more CPU processing power is required to render everything. Software rendering is slower than GPU ren-

dering, and so there is a processing trade off for the lower safety criticality level applications.  

Use Case: This scenario can be used for an ARINC 661 server that needs to draw 2D graphics or video on the display 

and where certain pages must also be slowly updated with text display data. An ARINC 661 server qualified to DAL A 

can be used to draw the Primary Flight Display, ADI ball and navigation information.  At the same time, a lower level 

PDF reader used to display airport approach procedures in the same system needs to read a PDF page and write it to 

the screen. Certifying the PDF reader can be avoided by using the software renderer to create an image of PDF page. 

The renderer can pass the page as a texture to the GPU, which then displays that page using the ARINC 661 server 

that controls where specifically on the screen the PDF should appear. The only item being passed from a low level to 

high level application is a bitmap, and to ensure proper operation, the higher level application is capable of shutting 

down the lower level application if it misbehaves. Not only that, the higher level application can detect if it’s not 

properly receiving the data, and the operating system can shut down if need be.  

http://www.coreavi.com
mailto:sales@coreavi.com
http://www.coreavi.com/sites/default/files/compositor_whitepaper_final.pdf
http://www.coreavi.com/sites/default/files/compositor_whitepaper_final.pdf


www.coreavi.com       sales@coreavi.com                                                                 3  

Scenario #3:  

Highest level application uses a software renderer and lower level applications uses GPU hardware ac-

celeration 

In this scenario, which is opposite to the one discussed above, the highest criticality level applications use a software 

renderer while the lower criticality level applications use GPU hardware acceleration. This scenario allows for less cer-

tification efforts for newer technologies such as Synthetic Vision Systems (SVS) for Degraded Visual Environments 

(DVE) while still maintaining the high assurance levels needed for Primary Flight Displays.  For example, the Primary 

Flight Display’s SVS 3D layer is at a lower DAL level and has the ability to shut down the SVS in case it misbehaves. This 

allows for a mixed DAL situation without shutting down higher DAL applications.  

Some considerations should be made for this scenario. When using a software renderer for the higher level applica-

tions, the CPU usage is more than if the system were using multiple GPUs to accomplish the same task. The same po-

tential also exists for keeping the GPU busy as identified in scenario #6. However in this case only the lower level ap-

plication is impacted. While display controllers generally have good separation from the GPU in most SoC and discrete 

graphics solutions, candidate solutions must be evaluated for any interference channels that may exist between the 

GPU and the display controller. This ensures that if a lower level application overloads or otherwise corrupts the GPU, 

the display controller is always accessible to the highest level application.  

Use case: In this scenario, a Primary Flight Display can be rendered by the software renderer. The ADI ball would run 

at 20 Hz in the front, while the SVS 3D display (which is best rendered by the GPU due to its large amount of data) 

would run in the background. The GPU hands a text image every frame to the software renderer. The software ren-

derer then takes that image, sets it to the background behind the ADI ball, and puts it into the frame buffer on the 

GPU. 

Figure 1: Primary Flight Display of a Boeing 777  

http://www.coreavi.com
mailto:sales@coreavi.com


www.coreavi.com       sales@coreavi.com                                                                 4  

Scenario #4:  

Upgrade all lower level applications to be equivalent of the highest application 

If lower level applications are not overly complex, this scenario may be a viable option. As all applications in this sce-

nario have been certified to the equivalent criticality level of the highest application, all applications are now safer to 

use, they can all use a GPU without any negative impact on each other, and the system can operate properly with a 

GPU or a software renderer – it does not require both.  No software library is needed or no GPU is needed. If there is a 

GPU, all applications are able to run at a faster rate and performance is increased.  

The main downside to this scenario is the need to certify all applications to a higher level. This will prove time consum-

ing and costly for the integrator, especially when a higher level of certification is not required for all applications. 

Use case: This scenario can technically be used on any system; however, due to the added cost and effort, it’s not typi-

cally implemented unless the lower safety applications are small.  

 

Scenario #5:  

Architect the system(s) to eliminate mixed safety criticality graphics 

One way to effectively accomplish this scenario is to increase the number of GPUs. Each GPU can be assigned its own a 

safety criticality level (for example, one for DAL A, one for DAL B, etc.) and then applications are assigned to their GPUs 

as per their required levels. When mixed on a single display, the highest criticality level GPU takes responsibility for 

driving the displays and the other GPUs send their outputs to it for display. Each individual display is owned by the 

highest application(s) that needs to display on it. For example, if the highest criticality level you need on one particular 

display is ASIL C, then the level C application owns the particular display.  

Benefits to this scenario include a high throughput rate and maximum ability to compute, as all applications can use a 

GPU to render graphics. The CPU workload is reduced due to GPU offload, and the integrator has the ability to seg-

ment different safety criticality levels onto specific GPUs.  In addition, now that many CPUs have integrated graphics, 

adding an additional GPU externally provides extra capabilities on top of the integrated graphics already available, 

which boosts performance power, allows for easy separation, and reduces memory transfer. The integrated graphics 

drive the output, so copying data back into the GPU is no longer required. For example, an SVS can run on the GPU, 

while the higher DAL applications can run on the integrated graphics – this increases performance over using a soft-

ware renderer and reduces CPU usage. Dissimilar GPUs (for example, Intel integrated graphics and an AMD GPU) may 

also be used together to validate and detect Hazardously Misleading Information (HMI) per the CAST-29 paper. 

It’s important to note that multiple GPUs in the same System on a Chip (SoC) can be used in this scenario (for example, 

the multiple GPUs inside NXP’s i.MX 8). Since the GPUs are contained within one SoC, there are no additional SWaP 

concerns. 

Scenario #5 also has several drawbacks. With multiple GPUs, more hardware is needed in the system, which increases 

size, weight and power (SWaP) and requires higher integration effort due to the need to move output video between 

GPUs. Combining integrated graphics with a discreet GPU (for example, Intel Core™ i7 and AMD’s E8860 GPU) also re-

quires some platform-specific architecting to arrange support from the driver and configure the discreet GPU’s output 

to flow into the integrated graphics. 

http://www.coreavi.com
mailto:sales@coreavi.com


www.coreavi.com       sales@coreavi.com                                                                 5  

Use Case: In the case of an SVS, all applications required may use a GPU, which results in faster performance. This al-

lows the SVS the ability to fully utilize the existing hardware and gives integrators the option of adding additional GPUs 

as needed.  

 

Scenario #6 

All graphics rendered using GPU hardware acceleration 

Hardware acceleration offloads the CPU by assigning certain processes to other hardware such as the GPU. This allows 

the CPU to focus more effectively on other tasks. A GPU is optimized for graphics, has a dedicated memory, and can 

process data in parallel. Although mixed safety criticality levels using a GPU can only exist together within one desig-

nated level of each other (for example, mixed applications of the same DAL level), one GPU may be used for all hard-

ware acceleration in the right circumstances, eliminating the need for multiple GPUs, and thus, extra hardware. GPU 

hardware acceleration is optimal for heavy graphics workloads needing high performance processing, as it results in a 

higher frame rate, which typically produces a seamless render.  

In real-time embedded safety critical applica-

tions, when it comes to mixed DAL levels this 

type of rendering has some major drawbacks. For 

example, using the GPU for hardware accelera-

tion runs the risk of a lower DAL application keep-

ing the GPU busy by operating on large amounts 

of graphics data or simply overloading the GPU 

command buffer, which could prevent or delay 

the more critical (DAL A/ ASIL D) applications 

from having enough GPU resources to operate 

properly. This can lead to hazardously misleading 

information because the data is stale.  Typical 

GPU hardware acceleration also does not provide 

a mechanism for getting control of the GPU back 

once it has been provided with commands (i.e. 

there is no pre-emption like on CPUs).  GPU hard-

ware acceleration is also not an easy condition to 

detect in a timely manner.  However, CoreAVI has 

developed a solution to this problem.  Contact 

CoreAVI for a copy a white paper describing the 

solution to full GPU acceleration of mixed DAL 

applications. 

Use case: GPU hardware acceleration can be used in a standard cockpit display system with a Primary Flight Display 

and navigational system where everything is at a higher DAL. This configuration allows the Primary Flight Display to be 

split up into multiple applications of multiple DAL levels, so long as the DAL levels are within one designated level of 

each other.   

Figure 2: GPU Acceleration 

http://www.coreavi.com
mailto:sales@coreavi.com


© 2018 Core Avionics & Industrial Inc. All rights reserved. 

www.coreavi.com       sales@coreavi.com                                                                       6 

Find Out More 

CoreAVI supports embedded graphics applications with GPUs supported by CoreAVI’s fully featured safety certifiable 

OpenGL drivers.  

More information about CoreAVI’s ArgusCore™ OpenGL drivers, with extensions, along with a comparison of driver 

features can found here: CoreAVI safety certifiable graphics drivers.  

 

Contact CoreAVI to find out what we are working on and to discuss your demonstration/evaluation requirements: 

Sales@CoreAVI.com. 

Author 

Mary Beth Barrans 

Director of Marketing 

 

Mary Beth Barrans joined CoreAVI in 2017. As the Director of Marketing, she is 
responsible for the product positioning and customer-focused power messaging 
for CoreAVI’s safety certifiable graphics and hardware IP product lines, as well as 
strategic partnerships and events. She previously worked for Curtiss-Wright De-
fense Solutions as a Senior Marketing Product Specialist. Mary Beth has a Bache-
lor of Social Sciences, a Bachelor of Education, a Masters of Arts, and a Technical 
Writing designation. 

http://www.coreavi.com
mailto:sales@coreavi.com
http://www.coreavi.com/product-categories/embedded-opengl-drivers
mailto:Sales@CoreAVI.com

